# SYNTHESIS OF THE GLYCOALKALOIDS OF SELAGINELLA DOEDERLEINII AND STRUCTURE REVISION OF ONE OF THEM ${ }^{1}$ 

Lin Rui Chao, ${ }^{2}$ Elisabeth Seguin, Alexios-Leandros Skaltsounis, Francois Tillequin, and Michel Koch*<br>Département de Pharmacognosie de l'Université René Descartes, UA au CNRS no. 484, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, F-75006 Paris, France


#### Abstract

The syntheses of hordenine- $\alpha-L$-rhamnopyranoside [1] and of the three possible isomers resulting from its glycosylation by ( $E$ )-6-0-cinnamoylglucose, as their acetyl derivatives 3,4 , and 5 , have been achieved. These results have led us to revise the structure of the acylated glycoalkaloid previously isolared from Selaginella doederleinii from 2 to 6 . In addition, the structure of a minor glycoside isolated from the same plant has been established as 7 , on the basis of the synthesis of its aceryl derivative 14.


We have recently reported the isolation from Selaginella doederleinii Hieron. (Selaginellaceae) of several hordenine-derived glycosides (1). The main constituent belonging to this series is hordenine- $\alpha-\mathrm{L}$-rhamnopyranoside $[1]$. It is accompanied in the plant extract by several minor glycosides of the general structure 6-0-cinnamoyl-(or 4-hydroxycinnamoyl-)-glucopyranosyl-rhamnopyranosyl-hordenine. The structure of one of them has been concluded to be ( $E$ )-hordenine-[6-0-cinnamoyl- $\beta$-D-glucopyranosyl]-( $1 \mapsto 4$ )- $\alpha$-L-rhamnopyranoside [2] on the basis of its ${ }^{13} \mathrm{C}$-nmr data (1), compared with those of flavonoid glycosides with a closely related sugar moiety, previously isolated from Ginkgo biloba ( 2,3 ). Nevertheless, more recently, an alternative structure with a different position of linkage between glucose and rhamnose units has been postulated for these flavonoids, on the basis of similar ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data (4). Finally, the correct structures of Ginkgo flavonoids were unequivocally established, using ${ }^{1} \mathrm{H}$ nmr multiple-pulse experiments (5). It was therefore obvious that ${ }^{13} \mathrm{C} \mathrm{nmr}$ did not permit us to assign unambiguously the site of glucosylation, at $\mathrm{C}-2, \mathrm{C}-3$, or $\mathrm{C}-4$ on the rhamnose unit, in such derivatives (6).

We report here the synthesis of hordenine- $\alpha$-L-rhamnopyranoside $[1]$ and of the three possible isomers resulting from its glycosylation by ( $E$ )-6-0-cinnamoyl glucose, as their acetyl derivarives $\mathbf{3}, \mathbf{4}$, and 5 . These results permitted us to determine with certainty the structure of the acylated glycoside previously isolated from $S$. doederleinii, which should be revised from 2 to 6 . In addition, the same syntheses using 4-hydroxycinnamic acid as acylating unit allowed us to depict as 7 the structure of a minor glycoalkaloid isolated initially in too small an amount to record its ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum.

## RESULTS AND DISCUSSION

To our knowledge, glycosidation reactions targeted towards the synthesis of $0-\alpha-\mathrm{L}-$ rhamnosides of phenols have not been systematically explored. Therefore, it was logical to try to synthesize 1 by various reactions previously described either for the rhamnosidation of alcohols or for the glycosidation of phenols by various carbohydrate units.

[^0]
$4 \mathrm{R}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{H} \quad 6 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H} \quad 7 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH} \quad 14 \mathrm{R}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{OAc}$

These reactions involve 2,3,4-tri- 0 -acetyl- $\alpha$-L-rhamnopyranosyl bromide [8], 2,3,4-tri- 0 -aceryl- $\alpha$-L-rhamnopyranose [9] or $1,2,3,4$-tetra- 0 -acetyl- $\alpha, \beta$-L-rhamnopyranose [10] (7).

The attempts to condense hordenine with 8 using either Königs-Knorr derived conditions $(8-10)$ or phase-transfer catalysis $(11,12)$ did not afford the expected compound 11 but rather the corresponding orthoester 12 (13-16) in $20-65 \%$ yield. Condensation of 9 with hordenine, carried out either with silver trifluoromethanesulfonate (17) or with triphenylphosphine and diethyl azodicarboxylate (18), led to an
equimolecular mixture of the orthoester 12 and the expected protected glycoside 11 in $20 \%$ overall yield. Finally, hordenine-(2,3,4-tri-0-acetyl)-0- $\alpha$-L-rhamnopyranoside [11] could be readily obtained in $46 \%$ yield by treatment of a solution of hordenine and $1,2,3,4$-tetra- 0 -acetyl- $\boldsymbol{\alpha}, \boldsymbol{\beta}$-L-rhamnopyranose $[\mathbf{1 0}]$ in MeCN with tin tetrachloride (19-23). Deprotection of $\mathbf{1 1}$ by NaOMe in MeOH (24) smoothly afforded hordenine-$\alpha$-L-rhamnopyranoside [1], identical with the natural product, in almost quantitative yield.

$8 \mathrm{R}=\mathrm{Br} \quad 9 \mathrm{R}=\mathrm{OH}$


10


12
The synthesis of the acylated alkaloid-glycosides 3, 4, and 5 and of their acetoxycinnamoyl counterparts 13,14 , and 15 involved successively (a) the synthesis of the acylated bromoglucose units 16 and 17, (b) the coupling of these bromo-derivatives with the unprotected rhamnose unit 18 in order to obtain simultaneously the three possible isomers, linked $1 \mapsto 2,1 \mapsto 3$, and $1 \mapsto 4$, and (c) the condensation of each disaccharide unit with hordenine by the method previously used for the synthesis of 11.

Condensation of 1,2,3,4-tetra- 0 -acetyl- $\beta$-D-glucopyranose [19] with either ( $E$ )cinnamoyl chloride [20] or (E)-4-acetoxycinnamoyl chloride [21] (25) in pyridine containing catalytic amounts of 4 -( $N, N$-dimethylamino)-pyridine led to ( $E$ )-1,2,3,4-retra-O-acetyl-6-0-cinnamoyl- $\beta$-D-glucopyranose [22] and (E)-6-0-(4-acetoxycin-namoyl)-1,2,3,4-tetra- 0 -acetyl- $\beta$-D-glucopyranose [23]. Conversion of 22 and 23 into the corresponding bromides 16 and 17 was achieved by treatment with HBr in anhydrous HOAc.

Reaction of methyl- $\alpha$-L-rhamnopyranoside [18] with either 16 or 17 (26) in the presence of mercuric cyanide (10) furnished a mixture of 24/25/26 or 27/28/29 in 62$65 \%$ overall yield. These compounds were difficult to separate from each other on a preparative scale. Therefore, only a small sample of the major compound $\mathbf{2 8}$ has been prepared from the former mixture for analytical purposes. The unseparable mixtures of $24 /$ 25/26 and 27/28/29 were then directly submitted to acetolysis (10), which afforded the acylated disaccharides $30 / 31 / 32$ and $33 / 34 / 35$. These compounds could be easily separated by repeated cc . Each of them has been characterized by its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum, and full assignments of the signals have been deduced from 2D COSY $45^{\circ}$ experiments (27-29). The abnormally high shielding of the signals of $\mathrm{H}-2$ in 30 and $33, \mathrm{H}-3$ in 31 and 34 , and $\mathrm{H}-4$ in 32 and 35 indicates that these positions are not acetylated and therefore correspond to the position of linkage of the glucose moiety on the rhamnose unit (30-32). The assignments of the signals of the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of compounds $30-$ 35 (Table 1) have then been deduced from $2 \mathrm{D}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ heteronuclear shift correlation

$16 \mathrm{R}=\mathrm{H}$
$17 \mathrm{R}=\mathrm{OAc}$


19


18


20 R=H
$21 \mathrm{R}=\mathrm{OAc}$

Table 1. ${ }^{13} \mathrm{C}$-nmr Spectra of Compounds $\mathbf{3 0 , 3 3 , 3 1 , 3 4 , 3 2}$ and $\mathbf{3 5}$ ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, \delta \mathrm{ppm}$ ).

| Carbon | Compound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30 | 33 | 31 | 34 | 32 | 35 |
| C-1 | 92.2 | 92.5 | 90.1 | 90.4 | 90.4 | 90.4 |
| C-2 | 75.6 | 76.0 | 70.0 | 70.2 | 68.8 | 68.8 |
| C-3 | 70.4 | 70.7 | 73.8 | 74.1 | 70.6 | 70.7 |
| C-4 | 70.4 | 70.7 | 71.6 | 71.9 | 76.2 | 76.3 |
| C-5 | 68.3 | 68.6 | 68.0 | 68.4 | 69.0 | 69.0 |
| C-6 | 17.1 | 17.5 | 17.0 | 17.3 | 17.5 | 17.6 |
| C-1' | 101.8 | 102.1 | 100.5 | 100.7 | 100.5 | 100.5 |
| C-2' | 70.8 | 71.1 | 70.8 | 71.1 | 71.1 | 71.1 |
| C-3' | 72.1 | 72.4 | 72.3 | 72.6 | 72.7 | 72.7 |
| C-4' | 68.6 | 68.8 | 68.1 | 68.4 | 68.8 | 68.8 |
| C-5' | 71.7 | 72.0 | 71.5 | 71.7 | 71.4 | 71.4 |
| C-6' | 61.8 | 62.1 | 61.6 | 61.8 | 62.0 | 62.0 |
| C-1" | 134.1 | 132.1 | 133.8 | 131.6 | 133.9 | 131.6 |
| C-2" | 128.0 | 122.1 | 127.8 | 122.1 | 128.0 | 122.1 |
| C-3" | 128.5 | 129.4 | 128.6 | 129.3 | 128.8 | 129.2 |
| C-4' | 130.1 | 152.2 | 130.2 | 152.0 | 130.4 | 152.2 |
| C-5" | 128.5 | 129.4 | 128.6 | 129.3 | 128.8 | 129.2 |
| C-6" | 128.0 | 122.1 | 127.8 | 122.1 | 128.0 | 122.1 |
| C-7" | 145.2 | 144.4 | 145.4 | 144.6 | 145.6 | 144.6 |
| C-8" | 117.2 | 117.6 | 116.9 | 117.2 | 116.9 | 117.1 |
| C-9" | 166.1 | 166.4 | 166.0 | 166.0 | 166.1 | 166.0 |
| OCOMe | 170.0 | 170.4 | 169.8 | 170.2 | 170.0 | 170.1 |
|  | 169.9 | 170.3 | 169.5 | 169.6 | 169.3 | 168.9 |
|  | 169.1 | 169.5 | 169.1 | 169.4 | 169.5 2C | 169.6 2C |
|  | 168.0 | 169.4 | 168.9 | 169.0 | 169.2 | 169.3 2C |
|  | 169.02 C | 169.3 | 168.7 | 169.2 2C | 168.3 |  |
|  |  | 169.2 | 167.8 |  |  |  |
| $\mathrm{OCOCH}_{3}$ | 20.52 C | 21.2 | 20.5 | 21.0 | 20.7 | 20.9 |
|  | 20.4 | 20.8 | 20.2 | 20.8 | 20.5 | 20.8 |
|  | 20.2 | 20.9 2C | 20.42 C | 20.7 2C | 20.42 C | 20.6 2C |
|  | 20.3 2C | 20.7 2C | $\begin{aligned} & 20.1 \\ & 20.0 \end{aligned}$ | 20.52 C | $20.3$ | 20.42 C |
| OCOMe-4" |  | 168.4 |  | 168.1 |  | 168.4 |
| $\mathrm{OCOCH}_{3}-4{ }^{\prime \prime}$ |  | 20.6 |  | 20.3 |  | 20.2 |

experiments (27-29). In terms of regioselectivity, it should be noted that the yields of glycosides followed the order $1 \mapsto 3>1 \mapsto 4>1 \mapsto 2$, as previously reported for the condensation of benzyl- $\alpha$-L-rhamnopyranoside with 2,3,4,6-tetra- 0 -acetyl- $\alpha$-D-glucopyranosyl bromide (26).
Finally, reaction of the acylated disaccharides $30-35$ with hordenine in the presence of tin tetrachloride in MeCN (19-23), gave the corresponding glycosides 3, 4, 5, 13,14 , and 15 in $50-60 \%$ yield.

The peracetyl derivative of the acylated alkaloid glycoside isolated from $S$. doederleinii (1) is identical in all respects with 4 and differs from both 5 and 3 . The structure of the natural alkloid should be revised from 2 to 6 . In addition, compound 14 is identical with the acetyl derivative of a minor glycoalkaloid isolated from $S$. doederleinii, whose structure is therefore established as 7.

Full interpretation of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of acetylglycosides $3-5$ and 13-15 has been deduced from 2D COSY spectra. The assignments of the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals have been deduced from heteronuclear shift correlation experiments (Table 2) (27-29). A study of the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long-range couplings observed in the COLOC spectrum of $\mathbf{4}$ $(29,33)$ allowed us to assign unambiguously most of the quaternary ${ }^{13} \mathrm{C}$ resonances. Furthermore, this experiment provides a direct evidence for the sequence of the different units by the observation of long-range correlations between $\mathrm{C}-1$ and $\mathrm{H}-1^{\prime}, \mathrm{H}-3^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$, and $\mathrm{CH}_{2}-6^{\prime \prime}$ and $\mathrm{C}-9^{\prime \prime \prime}$.

$22 \mathrm{R}=\mathrm{H}$
$23 \mathrm{R}=\mathrm{OAc}$

$24 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
$27 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OAc}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
$30 R=R^{\prime \prime}=A c, R^{\prime}=H$
$33 \mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{OAc}$

$25 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
$28 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OAc}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
$31 R=R^{\prime \prime}=A c, R^{\prime}=H$
$34 \mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{OAC}$

$26 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
$29 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OAc}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$
32
35
$R=R^{\prime \prime}=A c, R^{\prime}=H$
$R=R^{\prime \prime}=A c, R^{\prime}=O A c$

Table 2. ${ }^{13} \mathrm{C}$-nmr Spectra of Compounds $3,13,4,14,5$ and 15 ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}, \delta \mathrm{ppm}$ ).

| Carbon | Compound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 13 | 4 | 14 | 5 | 15 |
| C-1 | 154.5 | 154.6 | 154.2 | 154.6 | 154.4 | 154.9 |
| C-2 | 116.4 | 116.2 | 116.3 | 115.5 | 116.6 | 117.1 |
| C-3 | 129.8 | 130.1 | 129.4 | 130.3 | 129.6 | 130.1 |
| C-4 | 134.1 | 132.2 | 133.9 | 132.3 | 134.5 | 132.1 |
| C-5 | 129.8 | 130.1 | 129.4 | 130.3 | 129.6 | 130.1 |
| C-6 | 116.4 | 116.2 | 116.3 | 115.5 | 116.6 | 117.1 |
| C-7 | 31.9 | 31.9 | 31.7 | 31.8 | 33.2 | 31.9 |
| C-8 | 60.5 | 60.2 | 60.2 | 60.1 | 61.4 | 60.1 |
| $\mathrm{NMe}_{2}$ | 44.3 | 44.4 | 44.2 | 44.1 | 45.2 | 44.6 |
| C-1' | 96.7 | 96.9 | 95.4 | 95.6 | 95.8 | 95.9 |
| C-2' | 76.5 | 76.7 | 71.2 | 70.5 | 69.0 | 67.7 |
| C-3' | 71.1 | 71.2 | 74.4 | 74.3 | 71.0 | 71.4 |
| C-4' | 71.0 | 71.0 | 72.0 | 72.2 | 76.8 | 77.4 |
| C-5' | 66.9 | 67.0 | 66.7 | 66.7 | 70.1 | 70.3 |
| C-6' | 17.1 | 17.5 | 17.1 | 17.5 | 17.7 | 17.9 |
| C-1" | 102.1 | 102.3 | 102.8 | 101.0 | 100.7 | 101.0 |
| C-2' | 71.2 | 71.3 | 71.0 | 71.0 | 71.1 | 71.5 |
| C-3" | 72.3 | 72.5 | 72.5 | 72.3 | 73.0 | 73.1 |
| C-4" | 68.7 | 68.8 | 68.4 | 68.4 | 67.5 | 69.2 |
| C-5" | 72.1 | 72.2 | 71.6 | 71.5 | 71.2 | 71.8 |
| C-6" | 62.1 | 62.3 | 62.1 | 62.4 | 62.2 | 62.3 |
| C-1"' | 132.2 | 131.9 | 132.4 | 131.6 | 132.1 | 131.7 |
| C-2"' | 128.3 | 129.6 | 128.0 | 129.6 | 128.3 | 129.7 |
| C-3"' | 128.9 | 122.3 | 128.6 | 121.9 | 129.0 | 122.6 |
| C-4"' | 130.5 | 152.3 | 130.1 | 152.2 | 130.6 | 152.6 |
| C-5'' | 128.9 | 122.3 | 128.6 | 121.9 | 129.0 | 122.6 |
| C-6" | 128.3 | 129.6 | 128.0 | 129.6 | 128.3 | 129.7 |
| C-7' ${ }^{\prime \prime}$ | 145.7 | 144.6 | 145.5 | 143.5 | 145.9 | 144.9 |
| C-8' ${ }^{\prime \prime}$ | 117.1 | 117.3 | 116.9 | 116.5 | 117.1 | 118.2 |
| C-9'' | 166.4 | 166.1 | 166.2 | 165.9 | 166.4 | 166.5 |
| OCOMe | 170.4 | 170.52 C | 170.0 2C | 170.12 C | 170.4 | 170.5 |
|  | 170.3 | 170.3 | 169.4 | 169.1 2C | 170.0 | 170.3 |
|  | 169.7 | 169.5 | 169.1 | 168.9 | 169.7 | 169.9 |
|  | 169.5 | 169.2 | 168.9 |  | 169.5 | 169.7 |
|  | 169.4 |  |  |  | 169.4 | 169.5 |
| $\mathrm{OCOCH}_{3}$ | 20.9 | 21.42 C | 20.6 2C | 21.6 | 21.0 | 21.4 |
|  | 20.8 2C | 20.9 2C | 20.3 2C | 20.9 2C | 20.9 | 21.2 2C |
|  | 20.7 2C | 20.7 | 20.2 | 20.6 2C | $\begin{aligned} & 20.6 \\ & 20.5 \end{aligned}$ | 20.9 2C |
| OCOMe-4'' |  | 168.6 |  | 168.6 |  | 168.4 |
| $\mathrm{OCOCH}_{3}-4{ }^{\prime \prime \prime}$ |  | 20.6 |  | 20.5 |  | 20.6 |

## EXPERIMENTAL

General experimental procedures.-Optical rotations were measured on a Perkin-Elmer 141 polarimeter. Spectra were recorded on the following apparatus: uv, Unicam SP 800; ir, Beckman 4250 or Pye-Unicam SP 3-200; ms, Nermag R 10-10C; nmr Bruker HX 270 or AC 300 . Multi-impulsional experiments were performed using the standard Bruker microprograms.

O-exo-3,4-Di-O-ACETYL-1,2-0-\{4-(2-DIMETHYLAMINO-1-ETHYL)-1-PHENOXY\}-ETHYLIDENE- $\alpha$ -L-RHAMNOPYRANOSE [ 12$]$.-Mercuric cynanide ( $370 \mathrm{mg}, 1.46 \mathrm{mmol}$ ) and hordenine ( $130 \mathrm{mg}, 0.8$ mmol ) were added under stirring to a solution of 2,3,4-tri-O-acetyl- $\alpha$-L-rhamnopyranosyl bromide [8] ( $340 \mathrm{mg}, 1 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeCN}(5 \mathrm{ml})$. The reaction mixture was stirred at $20^{\circ}$ for 12 h . The MeCN was removed by evaporation under reduced pressure, and the remaining syrup was dissolved in
$\mathrm{CHCl}_{3}$ ( 50 ml ). The $\mathrm{CHCl}_{3}$ solution was washed with $10 \%$ aqueous $\mathrm{KBr}(2 \times 40 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{ml})$. The $\mathrm{CHCl}_{3}$ was evaporated, and the remaining syrup yielded 12 after purification by flash chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$-concentrated $\mathrm{NH}_{3}$ (90:10:1)]: yield $225 \mathrm{mg}(65 \%) ;[\alpha]^{20} \mathrm{D}-5^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right)$; uv $\lambda \mathrm{MeOH} \operatorname{max~nm}(\log \epsilon) 243$ (2.91), 266 (2.77), 273 (2.78); ir ( KBr ) $\left.v{\operatorname{max~} \mathrm{~cm}^{-1} 2950,1650,1505,1390,1380,1225,1170,1060 ; \mathrm{ms}(\mathrm{dci} \mathrm{NH}}_{3}\right) m / z(\%)$ $[\mathrm{M}+\mathrm{H}]^{+} 438(100), 273(14), 166(54) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.12(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, $\mathrm{H}-3, \mathrm{H}-5), 7.04(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 5.32\left(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.05(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-$ $\left.4^{\prime}\right), 5.00\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J=3.5 \mathrm{~Hz}, J^{\prime}=2.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.47$ ( $1 \mathrm{H}, \mathrm{dq}, J=9 \mathrm{~Hz}, J^{\prime}=7 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$ ), $2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 2.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right)$, 2.12, 2.05 ( $2 \times 3 \mathrm{H}, 2 \mathrm{~s}, 3^{\prime}$-OAc, $4^{\prime}-\mathrm{OAc}$ ), $1.82(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.22\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{Me}-6^{\prime}\right)$.

HORDENINE-( $2,3,4$-TRI- 0 -ACETYL)- $\alpha$-L-RHAMNOPYRANOSIDE [11].-Stannic chloride ( 0.3 ml ) was added to a solution of $1,2,3,4$-tetra- $O$-acetyl- $\alpha, \beta$-L-rhamnopyranose [ 10$]$ ( $825 \mathrm{mg}, 2.5 \mathrm{mmol}$ ) and hordenine ( $165 \mathrm{mg}, 1 \mathrm{mmol}$ ) in dry $\mathrm{MeCN}\left(10 \mathrm{ml}\right.$ ), and the mixture was stirred at $20^{\circ}$ for 24 h . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, alkalinized with saturated aqueous $\mathrm{NH}_{3}(5 \mathrm{ml})$, filtered, and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue yielded 11 after purification by flash chromatography [silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$-concentrated $\mathrm{NH}_{3}$ (90:10:1)]: yield $201 \mathrm{mg}(46 \%)$; $[\alpha]^{20} \mathrm{D}-2^{\circ}\left(\mathrm{CHCl}_{3}, \tau=0.5\right.$ ); ir ( KBr ) $\nu \operatorname{max~cm}{ }^{-1} 2995,2950,1750$, $1610,1510,1390,1375,1240,1225,1175,1055,955,900 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]^{+} 438$ (100), 166 (30), ${ }^{1} \mathrm{H}$-nmr data identical with those previously published (1).

Hordenine- $\alpha$-L-Rhamnopyranoside [1].-To a solution of 11 ( $90 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 ml ), 1 N NaOMe in $\mathrm{MeOH}\left(0.2 \mathrm{ml}\right.$ ) was added, and the mixture was stirred at $20^{\circ}$ for 3 h . After neutralization by addition of Amberlite IR $50 \mathrm{H}^{+}$ion exchange resin and filtration, the solvents were removed by evaporation to afford pure 1 , identical with the natural product isolated from S. doederleinii ( $[\alpha]^{20} \mathrm{D}, \mathrm{uv}$, ir, ms, ${ }^{1} \mathrm{H} \mathrm{nmr}$, tlc), yield $25 \mathrm{mg}(40 \%)$.
( $E$ ) - 1,2,3,4-Tetra-0-acetyl-6-0-cinnamoyl- $\beta$-D-Glucopyranose [22].-To an ice-ccoled solution of $1,2,3,4$-tetra- 0 -acetyl- $\beta$-D-glucopyranose $\{19\}(6 \mathrm{~g}, 17.2 \mathrm{mmol}$ ) and ( $E$ )-cinnamoyl chloride [20] ( $16.6 \mathrm{~g}, 100 \mathrm{mmol}$ ) in dry pyridine ( 200 ml ), was added $4-(N, N$-dimethylamino) pyridine (DMAP) $(3 \mathrm{~g})$. The reaction mixture was stirred at $20^{\circ}$ for 5 days and poured on cold $\mathrm{H}_{2} \mathrm{O}$ ( 5 liters). After 24 h , the precipitate was filtered and purified by flash chromatography [silica, hexanes-EtOAc (90:10, 70:30, 50:50)] to give 22: yield $6.75 \mathrm{~g}(82 \%) ;\{\alpha\}^{20} \mathrm{D}+20^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right) ;$ uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 282$ (4.57); $\mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 496(100), 419(90), 131(95) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta \mathrm{ppm} 7.74\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 7.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.42\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-\right.$ $\left.5^{\prime}\right), 6.49\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.78(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1), 5.23-5.17(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4)$, $4.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 3.94\left(1 \mathrm{H}, \mathrm{ddd}, J=10 \mathrm{~Hz}, J^{\prime}=6 \mathrm{~Hz}, J^{\prime \prime}=3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.13,2.05,2.04$, 2.02 ( $4 \times 3 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{OAc}$ ).
( $E$ )-6-0-(4-ACETOXYCINNAMOYL)-1,2,3,4-TETRA-0-ACETYL- $\beta$-D-GLUCOPYRANOSE [23].-In a procedure similar to the one used for the preparation of 22,23 was obtained from $19(6 \mathrm{~g}, 17.2 \mathrm{mmol})$ and $(E)-4$-acetoxycinnamoyl chloride $[21\}(20.8 \mathrm{~g}, 100 \mathrm{mmol})$ : yield $8.02 \mathrm{~g}(87 \%) ;[\alpha]^{20} \mathrm{D}+24^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=1)$; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 285(4.74) ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) m / z(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 554(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$ ) $\delta \mathrm{ppm} 7.64\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 7.52\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$, $7.09\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.70(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-1), 5.28-$ $5.11(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 4.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 3.89\left(1 \mathrm{H}, \mathrm{ddd}, J=10 \mathrm{~Hz}, J^{\prime}=6 \mathrm{~Hz}, J^{\prime \prime}=3\right.$ $\mathrm{Hz}, \mathrm{H}-5$ ), 2.27 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}$ ), 2.08, $2.00,1.99,1.96(4 \times 3 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{OAc})$.
(E)-2,3,4-TRI-O-ACETYL-6-0-CINNAMOYL- $\alpha$-D-GLUCOPYRANOSYL BROMIDE [16].- HBr in HOAc ( $40 \%$ solution, 8 ml ) was added dropwise under stirring at $0^{\circ}$ to a solution of $22(1.43 \mathrm{~g}, 0.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 ml ). After stirring 5 min at $0^{\circ}$ and 15 min at $20^{\circ}$, the reaction mixture was poured on ice-cold $\mathrm{H}_{2} \mathrm{O}\left(75 \mathrm{ml}\right.$ ), and the resulting two-phase system was vigorously stirred for $15 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 ml ) was added and the organic layer was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}$ ( $3 \times 20 \mathrm{ml}$ ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to afford 16: yield $1.03 \mathrm{~g}(68 \%) ;\{\alpha\}^{20} \mathrm{D}+26^{\circ}$ $(\mathrm{MeOH}, \epsilon=1)$; uv $(\mathrm{MeOH}) \lambda \max \mathrm{nm}(\log \epsilon) 278(4.44), \mathrm{ms}\left(\operatorname{dic} \mathrm{NH}_{3}\right) m / z(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 518(60)$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 516(59), 454(60), 412(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.73(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz}, \mathrm{H}-7^{\prime}$ ), 7.54 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$ ), $7.41\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{H}-1)$, $6.48\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.60(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3), 5.29(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4), 4.88(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-2\right), 4.38(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 2.09,2.07,2.02(3 \times 3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc})$.
( $E$ )-6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-0-ACETY.- $\alpha$-D-GLUCOPYRANOSYL BROMIDE [17].The acyl derivative $23(1.78 \mathrm{~g}, 0.3 \mathrm{mmol})$ was converted to compound 17 following the procedure described above for the preparation of 16 from 22: yield $1.54 \mathrm{~g}(92 \%) ;[\alpha]^{20} \mathrm{D}+23^{\circ}(\mathrm{MeOH}, c=1)$; ms (dci $\left.\mathrm{NH}_{3}\right)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 576(82),\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 574(81), 189(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS $) \delta \mathrm{ppm}$
$7.69\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 7.55\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.11\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, \mathrm{H}-\mathrm{s}^{\prime}\right)$, $6.62(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{H}-1), 6.41\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.59(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3), 5.21(1 \mathrm{H}, \mathrm{t}$, $J=9 \mathrm{~Hz}, \mathrm{H}-4), 4.87\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.37(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 2.31(3 \mathrm{H}, \mathrm{s}$, ArOAc), $2.10,2.07,2.04(3 \times 3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc}$ ).

REACTION OF 16 WITH METHYL- $\alpha-$ L-RHAMNOPYRANOSIDE [18].-To a solution of methyl- $\alpha$-Lrhamnopyranoside [18] ( $1.25 \mathrm{~g}, 7 \mathrm{mmol}$ ) and anhydrous mercuric cyanide ( 2.7 g ) in dry MeCN ( 30 ml ) was added the bromide $16(5.70 \mathrm{~g}, 11.5 \mathrm{mmol})$ with stirring; the stirring was continued for 5 h at $20^{\circ}$. The MeCN was removed from the reaction mixture under reduced pressure, and the remaining syrup was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was washed with 1 N aqueous $\mathrm{KBr}(2 \times 25 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed, and the remaining syrup was submitted to flash chromatography [silica, hexanes-ErOAc (25:75)] to give an unseparable mixture of 24, 25, and 26; overall yield $2.59 \mathrm{~g}(62 \%)$.

REACTION OF 17 WITH METHYL- $\alpha$-L-RHAMNOPYRANOSIDE [18].-In a procedure similar to the one used for the condensation of 16 with 18 , the bromide $17(6.40 \mathrm{~g}, 11.5 \mathrm{mmol})$ was reacted with 18 ( $1.25 \mathrm{~g}, 7 \mathrm{mmol}$ ) to afford a mixture of 27,28 , and 29 ; overall yield $2.97 \mathrm{~g}(65 \%)$.
( $E$ )-METHYL-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI- 0 -ACETYL- $\beta$-D-GLUCOPYRANOSYL]-( $1 \mapsto 3$ )-$\alpha-L-R H A M N O P Y R A N O S I D E[28]$.-Repeated cc [silica H, hexanes-EtOAc (40:60)] of the mixture of 27, 28, and 29 permitted us to prepare an analytical sample of the major component 28: $[\alpha\}^{20} \mathrm{D}+3^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $\iota=1$ ); uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 287(4.62) ; \mathrm{ir}(\mathrm{KBr}) v \operatorname{max~cm}{ }^{-1} 3520,2940,2840,1760,1635$, $1605,1510,1380,1320,1170,1050,980,910,840 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / z(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 672(100) ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.67\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.53\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-\right.$ $\left.6^{\prime \prime}\right), 7.10\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 5.22\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $5.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 4^{\prime}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-1), 4.40(1 \mathrm{H}, \mathrm{dd}$, $\left.J=12 \mathrm{~Hz}, J^{\prime}=2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=6 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.98(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}, \mathrm{H}-2)$, $3.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{S}^{\prime}\right), 3.66(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5), 3.21$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), $2.84,2.56\left(2 \times 1 \mathrm{H}, 2 \mathrm{brs}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $2-\mathrm{OH}, 4-\mathrm{OH}$ ), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.02,2.01,1.98(3 \times 3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OAc}), 1.27(3 \mathrm{H}$, $\mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6$ ).

Acetolysis of 24,25 , and 26 . -The mixture of compounds 24,25 , and 26 prepared above ( 4.18 g ) in $\mathrm{Ac}_{2} \mathrm{O}(17 \mathrm{ml})$ was shaken with $2 \%$ concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{Ac}_{2} \mathrm{O}(34 \mathrm{ml})$ at $20^{\circ}$ for 4 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 300 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 300 \mathrm{ml})$, and again with $\mathrm{H}_{2} \mathrm{O}(2 \times 300 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Separation by cc [silica H , hexanes-EtOAc (70:30, 60:40, 50:50)] of the recovered syrup gave 30 ( $235 \mathrm{mg}, 4.7 \%$ ), 31 ( $825 \mathrm{mg}, 13.5 \%$ ), and 32 ( $383 \mathrm{mg} 7.7 \%$ ).
(E)-( $2,3,4$-TRI- 0 -ACETYL- $6-0$-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)-( $1 \mapsto 2$ )-1,3,4-TRI-O-ACÉTYL-$\alpha-\mathrm{L}$-Rhamnopyranose [30].-Colorless foam: $[\alpha]^{20} \mathrm{D}-22^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right) ; \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{17}$; found C $55.70, \mathrm{H} 5.79, \mathrm{O} 38.31$, calcd C 55.93, H 5.69, O 38.40; uv ( $\left.\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \mathrm{\epsilon}) 282(4.72)$; ir $(\mathrm{KBr}) \nu \operatorname{max~cm}{ }^{-1} 3000,2950,1760,1640,1455,1375,1220,1170,1045,965,780 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ (\%) $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 726(93), 131(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.70(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, H-7"), 7.62 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$ ), 7.38 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$ ), 6.49 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}$ ), $6.16(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.24\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.16\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3\right)$, $5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right), 5.00(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4), 4.58\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.32(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}$ ), 4.04 ( $1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2$ ), $3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5\right.$ ), 3.79 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$ ), 2.13, $2.08,2.04,2.03,2.03,2.02,(6 \times 3 \mathrm{H}, 6 \mathrm{~s}, 6 \times \mathrm{OAc}), 1.21(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6) ;{ }^{13} \mathrm{C}$ nmr see Table 1.
(E)-(2,3,4-TRI-O-ACETYL-6-O-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)- $1 \mapsto 3$ )-1,2,4-TRI-O-ACETYL-$\alpha-$ L-RHAMNOPYRANOSE [31].-Colorless foam: $[\alpha]^{20} \mathrm{D}-12^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right) ; \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{17}$; found C $55.76, \mathrm{H} 5.66, \mathrm{O} 38.33$, calcd C 55.93, H 5.69, O 38.40; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 284$ (4.70); ir $\mathrm{KBr} \nu \max \mathrm{cm}^{-1} 3000,2950,1760,1640,1455,1375,1220,1170,1065,1040,975,910,775 ; \mathrm{ms}$ (dci $\mathrm{NH}_{3}$ ) $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 726(100), 131(55) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.73(1 \mathrm{H}, \mathrm{d}$, $\left.J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 7.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 6.44(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, $\left.\mathrm{H}-8^{n}\right), 5.98(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.19\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.17(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}$, H-3'), $5.12\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4), 4.97\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.69$ ( $1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ ), $4.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3\right), 3.80$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5^{\prime}$ ), 2.12, 2.11, 2.03, 2.03, $1.99,1.98(6 \times 3 \mathrm{H}, 6 \mathrm{~s}, 6 \times \mathrm{OAc}), 1.20(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, Me-6); ${ }^{13} \mathrm{C}$ nmr see Table 1.
( $E$ ) - ( $2,3,4$-TRI- 0 -ACETYL- $6-0$-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL $)(1 \mapsto 4)-1,2,3$-TRI- 0 -ACETYL-$\alpha-$ L-RhamNOPYRANOSE [32].-Colorless foam: $[\alpha]^{20} \mathrm{D}-46^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right) ; \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{17}$; found C
55.78, H 5.80, O 38.45, calcd C 55.93, H 5.69, O 38.40; uv CHCl ${ }_{3} \lambda \max \mathrm{~nm}(\log \epsilon) 281$ (4.65); ir ( KBr ) $\nu \operatorname{max~} \mathrm{cm}^{-1} 2995,1945,1760,1640,1455,1375,1250,1225,1170,1065,1040,980,910$, 780 ; $\mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 726(100), 131(20) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm}$ $.7 .71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 7.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 6.43(1 \mathrm{H}$, $\left.\mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 5.94(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J=10 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3\right), 5.18$ $\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.13\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.09\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.97$ $\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.26$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=6 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right), 3.68(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{H}-4), 2.12$, $2.08,2.03,2.02,1.98,1.97(6 \times 3 \mathrm{H}, 6 \mathrm{~s}, 6 \times \mathrm{OAc}), 1.33(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.

ACETOLYSIS OF 27, 28, AND 29. -The mixture of compounds 27,28 , and $29(2.50 \mathrm{~g})$ was submitted to acetolysis in a procedure similar to that described for 24,25 , and 26 and gave 33 ( 61.5 mg , $2.1 \%$ ), 34 ( $381 \mathrm{mg}, 13 \%$ ), and 35 ( $135 \mathrm{mg}, 4.6 \%$ ).
(E)-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-O-ACETYL- $\beta$-D-GLUCOPYRANOSYL]-( $1 \mapsto 2$ )-1,3,4-TRI-O-ACETYL- $\alpha$-L-RHAMNOPYRANOSE [33].-Colorless foam: $[\alpha]^{20} \mathrm{D}-27^{\circ}\left(\mathrm{CHCl}_{3}, c=0.5\right)$; $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{19}$; found $\mathrm{C} 54.68, \mathrm{H} 5.70, \mathrm{O} 39.78$, calcd C 54.83, H 5.52, O 39.65 ; uv $\left(\mathrm{CHCl}_{3}\right) \lambda$ max nm $(\log \epsilon) 284(4.62)$; ir $(\mathrm{KBr}) \nu \operatorname{max~cm}^{-1} 2920,1755,1635,1600,1510,1435,1375,1225,1170,1050$, $960,910,840 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 784(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm}$ $7.70\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.60\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 7.13\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right)$, $6.47\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 6.17(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.24\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.16(1 \mathrm{H}$, $\left.\mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3\right), 5.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right), 5.00(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4), 4.57(1 \mathrm{H}, \mathrm{d}$, $\left.J=8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.04\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 3.91(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 3.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.13,2.08,2.06,2.05,2.05,2.04(6 \times 3 \mathrm{H}, 6 \mathrm{~s}$, $6 \times \mathrm{OAc}), 1.21(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.
(E)-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-O-ACETYL- $\beta$-D-GLUCOPYRANOSYL]-( $1 \mapsto 3$ )-1,2,4-TRI-O-ACETYL- $\alpha$-L-RHAMNOPYRANOSE [34].-Colorless foam: $[\alpha]^{20} \mathrm{D}-3.5^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right)$; $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{19}$; found C 54.69, H 5.72, O 39.49, calcd C 54.83, H 5.52, O 39.65; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}$ $(\log \epsilon) 285(4.60)$; ir (KBr) $v \operatorname{max~cm}^{-1} 3000,2950,1760,1640,1605,1510,1435,1375,1225,1170$, $1060,975,910,840 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 784(100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS $) ~ \delta$ ppm $7.71\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.56\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 7.12\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right.$, $\left.\mathrm{H}-\mathrm{s}^{\prime \prime}\right), 6.41\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 5.98(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.19\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5\right.$ $\mathrm{Hz}, \mathrm{H}-2), 5.13\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.09\left(2 \mathrm{H}, 2 \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-4^{\prime}\right), 4.95(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-$ $\left.2^{\prime}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-\right.$ 3), $3.80(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5$ '), $2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.09,2.08,2.03,2.01,2.00,1.97(6 \times 3 \mathrm{H}, 6 \mathrm{~s}$, $6 \times \mathrm{OAc}), 1.18(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.
(E)-[6-O-(4-ACETOXYCINNAMOYZ)-2,3,4-TRJ-O-ACETYL- $\beta$-D-GLUCOPYRANOSYL]-(1 $\rightarrow 4$ )-1,2,3-TRI-O-ACETYL- $\alpha-$ L-RHAMNOPYRANOSE $[35]$.-Colorless foam: $[\alpha]^{20} \mathrm{D}-39^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right)$; $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{19}$; found C 54.74, H 5.75, O 39.65, calcd C 54.83, H 5.52, O 39.65 ; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \operatorname{max~nm}$ $(\log \epsilon) 286(4.64) ; \operatorname{ir}(\mathrm{KBr}) \vee \max \mathrm{cm}^{-1} 2950,1760,1635,1605,1510,1475,1220,1170,1065,1040$, 975, 915,845 ; ms (dci $\left.\mathrm{NH}_{3}\right) m / z(\%)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 784(100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS $) \delta \mathrm{ppm}$ $7.67\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.59\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 7.13\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-\mathrm{s}^{\prime \prime}\right)$, $6.41\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 5.97(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.26\left(1 \mathrm{H}, \mathrm{dd}, J=10 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-\right.$ 3), $5.22\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.20\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.14(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-$ $\left.4^{\prime}\right), 4.99\left(1 \mathrm{H}, t, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.6^{\prime} \mathrm{b}\right), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right), 3.69(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{H}-$ 4), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.15,2.10,2.08,2.05,2.02,2.00(6 \times 3 \mathrm{H}, 6 \mathrm{~s}, 6 \times \mathrm{OAc}), 1.36(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}, \mathrm{Me}-6)$; ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 .

Synthesis of alkaloid-glycosides $3,4,5,13,14$, and 15 .-In a typical experiment, freshly distilled stannic chloride ( 0.3 ml ) was added dropwise under stirring to a solution of hordenine ( $165 \mathrm{mg}, 1$ mmol ) and disaccharide $30,31,32,33,34$, or $35(0.4 \mathrm{mmol})$ in dry MeCN . The reaction mixture was kept under stirring for 5 h at $20^{\circ}$, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, alkalinized by concentrated $\mathrm{NH}_{3}$, filtered, and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the residue by flash chromatography \{silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$-concentrated $\mathrm{NH}_{3}$ ( $90: 10: 1$, 85:15:1.5)] led to the corresponding alkaloid-glycoside in $50-60 \%$ yield.
(E)-HORDENINE-(2,3,4-TRI-O-ACETYL-6-0-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)-( $1 \mapsto 2$ )-3,4-DI-O-ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [3].-Colorless glass: $[\alpha]^{20} \mathrm{D}-41^{\circ}\left(\mathrm{CHCl}_{3}, c=0.8\right)$; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 280(4.47)$; ir $(\mathrm{KBr}) \nu \operatorname{max~cm}{ }^{-1} 2950,1760,1635,1510,1380,1225,1175$, $1045,985,910,775 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)\left[\mathrm{M}+\mathrm{H}^{+} 814(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta\right.$ $\operatorname{ppm} 7.57\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{m^{\prime}}\right), 7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{m}, \mathrm{H}-3^{m}, \mathrm{H}-4^{m}, \mathrm{H}-5^{m}, \mathrm{H}-6^{m}\right), 7.08(2 \mathrm{H}, \mathrm{d}, J=9$
$\mathrm{Hz}, \mathrm{H}-3, \mathrm{H}-5), 6.97(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 6.29\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{m}\right), 5.58(1 \mathrm{H}, \mathrm{d}, J=1.5$ $\left.\mathrm{Hz}, \mathrm{H}-1^{\prime}\right), 5.36\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.26\left(1 \mathrm{H}, \mathrm{r}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.13(1 \mathrm{H}, \mathrm{t}, J=9$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime \prime}\right), 5.08\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.98\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$, $4.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.87\left(1 \mathrm{H}, \mathrm{dq}, J=9 \mathrm{~Hz}, J^{\prime}=6\right.$ $\left.\mathrm{Hz}, \mathrm{H}-\mathrm{S}^{\prime}\right), 3.76\left(1 \mathrm{H}, \mathrm{ddd}, J=9 \mathrm{~Hz}, J^{\prime}=6 \mathrm{~Hz}, J^{\prime \prime}=3 \mathrm{~Hz}, \mathrm{H}-\mathrm{s}^{\prime \prime}\right), 2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.73(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2}-8\right), 2.51\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.17,2.11,2.04,2.03,2.01(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, Me-6'); ${ }^{13} \mathrm{C}$ nmr see Table 2.
( $E$ )-HORDENINE-( $2,3,4-$ TRI-O-ACETYL-6-0-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)-( $1 \mapsto 3$ )-2,4-DI-O-ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [4].-Colorless glass; $[\alpha]^{20} \mathrm{D}-34^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right)$; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 282(4.52)$; ir (KBr) $\nu \max \mathrm{cm}^{-1} 2950,1760,1640,1510,1380,1225,1175$, $1065,1040,985,910,775 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]^{+} 814(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta \mathrm{ppm} 7.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}-7^{m}\right), 7.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{m}, \mathrm{H}-6^{\prime \prime \prime}\right), 7.28\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{m}, \mathrm{H}-4^{m}, \mathrm{H}-\right.$ $\left.5^{\mathrm{mm}}\right), 5.93(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-\mathrm{S}), 6.85(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 6.40(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-$ $\left.8^{\prime \prime \prime}\right), 5.32\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.31\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.15(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime \prime}\right), 5.07\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.03\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.94\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 4.69(1 \mathrm{H}$, $\left.\mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.81(2 \mathrm{H}$, m, H-5', H-5"), $2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 2.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.06,2.04,1.97,1.96$, $1.92(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}), 1.11\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ nmt see Table 2.

The compound was identical with that obtained by acerylation of the natural alkaloid-glycoside previously isolated from $S$. doederleinii ( $[\alpha]^{20} \mathrm{D}, \mathrm{uv}, \mathrm{ir}, \mathrm{ms},{ }^{1} \mathrm{H} \mathrm{nmr}, \mathrm{tlc}$ ) (1).
(E)-HORDENINE-(2,3,4-TRI-O-ACETYL-6-0-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)-(1 $\mapsto 4$ )-2,3-DI-O-ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [5].-Colorless glass: $[\alpha]^{20} \mathrm{D}-40^{\circ}\left(\mathrm{CHCl}_{3}, c=1\right)$; uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 280(4.48)$; ir $(\mathrm{KBr}) v \operatorname{max~cm}{ }^{-1} 2950,1760,1640,1510,1375,1250,1220$, $1170,1070,1045,985,910,775$; ms (dci $\left.\mathrm{NH}_{3}\right) m / z(\%)[\mathrm{M}+\mathrm{H}]^{+} 814(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.72\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime \prime}\right), 7.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{m \prime}\right), 7.42\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{m \prime}\right.$, H-4"', H-5'"), $7.13(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 7.01(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 6.47(1 \mathrm{H}, \mathrm{d}, J=17$ $\left.\mathrm{Hz}, \mathrm{H}-8^{\prime \prime \prime}\right), 5.46\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.37\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.33(1 \mathrm{H}, \mathrm{dd}$, $\left.J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.21\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.14\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.99(1 \mathrm{H}, \mathrm{t}$, $\left.J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.30(1 \mathrm{H}$, $\left.\mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=5 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5^{\prime \prime}\right), 3.74\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.89(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2}-7\right), 2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.14,2.12,2.08,2.05,2.03(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc})$, $1.31\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6\right.$ ) ; ${ }^{13} \mathrm{C}$ nmr see Table 2.
(E)-HORDENINE-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-0-ACETYL- $\beta$-D-GLUCOPYRANOSYL]( $1 \mapsto 2$ )-3,4-DI- 0 -ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [13].-Colorless glass: $[\alpha]^{20} \mathrm{D}-29^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $\epsilon=0.5$ ); uv $\left(\mathrm{CHCl}_{3}\right) \lambda \operatorname{max~nm}(\log \epsilon) 283$ (4.44), $290(\mathrm{sh}, 4.42)$; ir $(\mathrm{KBr}) \nu \max \mathrm{cm}^{-1} 2950,1760,1635$, $1510,1375,1225,1170,1045,985,910 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]{ }^{+} 872(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.58\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime \prime}\right), 7.49\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}\right), 7.13$ $\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 7.08(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 6.97(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6)$, $6.29\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime \prime}\right), 5.58\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J=10 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}\right.$ $\left.3^{\prime}\right), 5.27\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.12\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 5.09\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.98(1 \mathrm{H}$, $\left.t, J=10 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.21(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}$, $\left.J^{\prime}=2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{s}^{\prime \prime}\right), 2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right)$, $2.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.17,2.11,2.03,2.02,2.00(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}), 1.16$ ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6^{\prime}$ ); ${ }^{{ }^{13} \mathrm{C} \mathrm{nmr}}$ see Table 2.
(E)-HORDENINE-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-0-ACETYL- $\beta$-D-GLUCOPYRANOSYL] $(1 \mapsto 3)-2,4$-DI- 0 -ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [14].-Colorless glass: $[\alpha]^{20} \mathrm{D}-31^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=1$ ); uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 283$ (4.42), $290(\mathrm{sh}, 4.41)$; ir $(\mathrm{KBr}) v \max \mathrm{~cm}^{-3} 2950,1760,1635$, $1605,1510,1375,1225,1170,1060,1040,990,910,840 ; \mathrm{ms}(\mathrm{dciNH} 3) m / z(\%) 872[\mathrm{M}+\mathrm{H}]^{+}(100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta \mathrm{ppm} 7.72\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-7^{m}\right), 7.48\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-2^{m}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right), 7.06\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 7.00(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 6.68(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6), 6.41\left(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 5.39\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.37(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}$, $\left.J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.12\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right), 5.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime \prime}\right), 4.99\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.23$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right), 2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-\right.$ 8), $2.51\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc}), 2.14,2.11,2.04,2.03,2.00(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}), 1.14$ ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6$ ); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{see} \mathrm{Table} 2$.

The compound was identical with the product obtained by acetylation of natural $7\left([\alpha]^{20} \mathrm{D}, \mathrm{uv}\right.$, ir, $\mathrm{ms},{ }^{1} \mathrm{H} \mathrm{amr}$, tic).
(E)-HORDENINE-[6-0-(4-ACETOXYCINNAMOYL)-2,3,4-TRI-0-ACETYL- $\beta$-D-GLUCOPYRANOSYL]$(1 \mapsto 4)-2,3-\mathrm{DI}-0$-ACETYL- $\alpha$-L-RHAMNOPYRANOSIDE [15].-Colorless glass: $[\alpha]^{20} \mathrm{D}-34^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $\epsilon=1$ ); uv $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \epsilon) 285$ (4.45), 291 ( $\mathrm{sh}, 4.44$ ); ir ( KBr ) $\nu \operatorname{max~cm}{ }^{-1} 2950,1760,1635$, 1605, $1510,1380,1225,1170,1065,1045,985,910,840$; $\mathrm{ms}\left(\mathrm{dci} \mathrm{NH} \mathrm{N}_{3}\right) \mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]^{+} 872(100)$; ${ }^{1} \mathrm{H} \operatorname{nmr}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.70\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.57\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{m}\right.$, H-6"'), $7.12\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 7.10(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 6.99(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6), 6.39\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime \prime}\right), 5.43\left(1 \mathrm{H}, \mathrm{dd}, J=9 \mathrm{~Hz}, J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.34(1 \mathrm{H}, \mathrm{d}$, $\left.J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.32\left(1 \mathrm{H}, \mathrm{dd}, J=3 \mathrm{~Hz}, J^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.12(1 \mathrm{H}$, $\left.\mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.98\left(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.46(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}$, $\left.J^{\prime}=3 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J=12 \mathrm{~Hz}, J^{\prime}=5 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right), 3.70(1 \mathrm{H}, \mathrm{t}$, $\left.J=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 2.56\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOAc})$, $2.11,2.10,2.04,2.01,1.99(5 \times 3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}), 1.28\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Me}-6^{\prime}\right) ;{ }^{13} \mathrm{C}$ nmr see Table 2.
(E)-HORDENINE-[6-0-(4-HYDROXYCINNAMOYL)- $\beta$-D-GLUCOPYRANOSYL]-( $1 \mapsto 3$ )- $\alpha$-L-RHAMNOPYRANOSIDE [7].-Isolated by cc on Si gel from the most polar fractions of the $n$ - BuOH extract of $S$. doederleinii (1) as an amorphous solid: $[\alpha]^{20} \mathrm{D}-81^{\circ}(\mathrm{MeOH}, c=0.2)$; uv $(\mathrm{MeOH}) \lambda \max \mathrm{nm} 227,315$, $(\mathrm{MeOH}+\mathrm{MeONa}) \lambda \max \mathrm{nm} 227,243(\mathrm{sh}), 312(\mathrm{sh}), 365 ; \mathrm{ms}\left(\mathrm{dci} \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]^{+} 620$ (11), 474 (12), 312 (13), 166 (100); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}, \mathrm{TMS}\right) \delta \mathrm{ppm} 7.57(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-$ $\left.7^{\prime \prime \prime}\right), 7.20\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2^{m}, \mathrm{H}-6^{\prime \prime \prime}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right), 6.76(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, H-3, H-5), $6.70(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8^{m}\right), 5.28(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-$ $\left.1^{\prime}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.02-3.31(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\left.2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 2.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7, \mathrm{H}_{2}-8\right), 2.79(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe} 2$ ), $1.12(3 \mathrm{H}, \mathrm{d}$, $\left.J=6 \mathrm{~Hz}, \mathrm{Me}-6^{\prime}\right)$.

Acetylation of 7.-To a solution of $7(8 \mathrm{mg})$ in pyridine ( 1 ml ) was added $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{ml})$. The mixture was kept at $20^{\circ}$ for 72 h . After removal of the reagents and purification by cc, 14 was obtained as a glassy solid ( 5 mg ), identical with the synthetic sample described above.
( $E$ )-HORDENINE-( $6-0$-CINNAMOYL- $\beta$-D-GLUCOPYRANOSYL)-( $1 \mapsto 3$ )- $\alpha$-L-RHAMNOPYRANOSIDE [6]. -The ${ }^{13} \mathrm{C}$-nmr spectrum of 6 previously published (1) has to be reassigned as follows: $\delta \mathrm{ppm} 17.6$ (C$6^{\prime}$ ), 32.1 (C-7), 44.8 (2C, $\mathrm{NMe}_{2}$ ), 60.6 (C-8), $64.0\left(\mathrm{C}-6^{\prime \prime}\right), 69.6$ (C-5'), 70.1 (C-2'), 70.3 (C-4"), 70.4 (C-4'), 73.6 (C-5"*), 73.7 (C-2"*), 76.0 (C-3"), 80.9 (C-3'), 98.6 (C-1'), 104.6 (C-1"), 116.3 (2C, C-2, C-6), 117.7 (C-8"'), 128.0 (2C, C-2"', C-8"'), 128.7 (2C, C-3m, C-5"), 129.3 (2C, C-3, C-5), 130.1 (C$\left.4^{m}\right), 133.6\left(\mathrm{C}-1^{m * *}\right), 133.7\left(\mathrm{C}-4^{* *}\right), 144.4\left(\mathrm{C}-7^{m}\right), 154.0(\mathrm{C}-1), 165.9\left(\mathrm{C}-9^{m \prime}\right)$. Assignments with the same superscript may be interchanged.

## ACKNOWLEDGMENTS

We are indebted to Dr. G. Massior, Département de Pharmacognosie, Université de Reims, France, for recording the ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C} 2 \mathrm{D}$ nmr spectra and for fruitful discussions. We are grateful to Dr. F. Hotellier, Département de Pharmacognosie, Université de Paris V, France, for running numerous ms. L.R.C. thanks the State Educational Commission of the People's Republic of China and the French Ministry for Foreign Affairs for a doctoral fellowship.

## LITERATURE CITED

1. R.C. Lin, E. Seguin, F. Tillequin, and M. Koch, J. Nat. Prod., 50, 422 (1987).
2. C. Nasr, M. Haag-Berrurier, A. Lobstein-Guth, and R. Anton, Pbytachemistry, 25, 770 (1986).
3. C. Nasr, M. Haag-Berrurier, A. Lobstein-Guth, and R. Anton, Phytochemistry, 26, 2869 (1987).
4. M. Takeshi and S. Tsuyoshi, Eur. Pat. Appl. EP 237,066 (16/09/87, to Daicel Chemical Industries Ltd.); Chem. Abstr., 108, P 13396d (1988).
5. P.Braquet, C. Roumestand, and B. Perly, in: "Abstracts." The Second International Symposium on Plant Flavonoids in Biology and Medicine, Strasbourg, 1987, p. 47.
6. P. Colson and R.R. King, Carbohydr. Res., 47, 1 (1976).
7. G.M. Bebault, G.G.S. Dutton, and C.K. Warfield, Carbohydr. Res., 34, 174 (1974).
8. W. Königs and E. Knorr, Ber. Dtsch. Chem. Ges., 34, 957 (1901).
9. K. Szekely, B. Vermes, L. Farkas, and M. Nogradi, Acta Cbim. Acad. Sci. Hung., 98, 241 (1978).
10. G.M. Bebault and G.G.S. Dutton, Can. J. Cbem., 50, 3373 (1972).
11. D. Dess, H.P. Kleine, D.V. Weinberg, R.J. Kaufman, and R.S. Sidhu, Synthesis, 883 (1981).
12. H.P. Kleine, D.V. Weinberg, R.J. Kaufman, and R.S. Sidhu, Carbobydr. Res., 142, 333 (1985).
13. D.R. Bundle and S. Josephson, Can. J. Chem., 57, 662 (1978).
14. A.S. Perlin, Can. J. Chem., 40, 399 (1962).
15. M. Mazurek and A.S. Perlin, Can. J. Cbem., 43, 1918 (1965).
16. C. du Mortier, O. Varela, and R.M. de Lederkremer, Carbabydr. Res., 189, 79 (1989).
17. S. Koto, N. Morishima, M. Araki, T. Tsuchiya, and S. Zen, Bull. Chem. Soc. Jpn., 54, 1895 (1981).
18. G. Grynkiewicz, Pol. J. Cbem., 53, 1571 (1979).
19. S. Hanessian and J. Banoub, Tetrabedron Lett., 657 (1976).
20. S. Hanessian and J. Banoub, Carbobydr. Res., 59, 261 (1977).
21. K. Honma, K. Nakazima, T. Uematsu, and A. Hamada, Chem. Pharm. Bull., 24, 394 (1976).
22. M.J. Wanner, T.J. Kommen, and U.K. Pandit, Tetrahedron, 39, 3673 (1983).
23. A.W. Mazur and G.D. Hiler Jr., Carbobydr. Res., 168, 146 (1987).
24. B. Vermes, V. Mohan Chari, and H. Wagner, Helv. Chim. Acta, 64, 1964 (1981).
25. S. Ogawa, Bull. Chem. Soc. Jpn., 2, 20 (1927).
26. R.R. King and C.T. Bishop, Can. J. Cbem., 52, 3913 (1974).
27. A. Bax, "Two Dimensional Nuclear Magnetic Resonance in Liquids," Delft University Press, Delft, 1984.
28. R. Benn and H. Günther, Angew. Cbem., 95, 381 (1983).
29. A.E. Derome, Nat. Prod. Rep., 6, 111 (1989).
30. G. Massior, C. Lavaud, D. Guillaume, L. Le Men-Olivier, and G. Van Binst, J. Chem. Sac., Chem. Commun., 1485 (1986).
31. G. Massiot, C. Lavaud, L. Le Men-Olivier, G. Van Binst, S.P.F. Miller, and H.M. Fales, J. Chem. Soc., Perkin Trans. 1, 3071 (1988).
32. D. Stosic, M. Gorunovic, A.-L. Skaltsounis, F. Tillequin, and M. Koch, Helv. Cbim. Acta, 71, 348 (1988).
33. H. Kessler, C. Griesinger, J. Zarbock, and H.R. Loosli, J. Magn. Reson., 57, 331 (1984).

Rereived 19 December 1989


[^0]:    ${ }^{1}$ This work has been previously presented at the Second Sino-French Symposium on the Chemistry of Natural Products, La Londe-Les-Maures, France, September 20-22, 1988.
    ${ }^{2}$ On leave from Beijing College of Traditional Chinese Medicine, He Ping Jie Bei Kou, Beijing, China.

